Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

High-dimensional Filtering using Nested Sequential Monte Carlo (1612.09162v1)

Published 29 Dec 2016 in stat.CO and stat.ML

Abstract: Sequential Monte Carlo (SMC) methods comprise one of the most successful approaches to approximate Bayesian filtering. However, SMC without good proposal distributions struggle in high dimensions. We propose nested sequential Monte Carlo (NSMC), a methodology that generalises the SMC framework by requiring only approximate, properly weighted, samples from the SMC proposal distribution, while still resulting in a correct SMC algorithm. This way we can exactly approximate the locally optimal proposal, and extend the class of models for which we can perform efficient inference using SMC. We show improved accuracy over other state-of-the-art methods on several spatio-temporal state space models.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.