Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Phase-incorporating Speech Enhancement Based on Complex-valued Gaussian Process Latent Variable Model (1612.09150v2)

Published 29 Dec 2016 in cs.SD

Abstract: Traditional speech enhancement techniques modify the magnitude of a speech in time-frequency domain, and use the phase of a noisy speech to resynthesize a time domain speech. This work proposes a complex-valued Gaussian process latent variable model (CGPLVM) to enhance directly the complex-valued noisy spectrum, modifying not only the magnitude but also the phase. The main idea that underlies the developed method is the modeling of short-time Fourier transform (STFT) coefficients across the time frames of a speech as a proper complex Gaussian process (GP) with noise added. The proposed method is based on projecting the spectrum into a low-dimensional subspace. The likelihood criterion is used to optimize the hyperparameters of the model. Experiments were carried out on the CHTTL database, which contains the digits zero to nine in Mandarin. Several standard measures are used to demonstrate that the proposed method outperforms baseline methods.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube