Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Deep Semi-Supervised Learning with Linguistically Motivated Sequence Labeling Task Hierarchies (1612.09113v1)

Published 29 Dec 2016 in cs.CL

Abstract: In this paper we present a novel Neural Network algorithm for conducting semi-supervised learning for sequence labeling tasks arranged in a linguistically motivated hierarchy. This relationship is exploited to regularise the representations of supervised tasks by backpropagating the error of the unsupervised task through the supervised tasks. We introduce a neural network where lower layers are supervised by junior downstream tasks and the final layer task is an auxiliary unsupervised task. The architecture shows improvements of up to two percentage points F1 for Chunking compared to a plausible baseline.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.