Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Creating A Multi-track Classical Musical Performance Dataset for Multimodal Music Analysis: Challenges, Insights, and Applications (1612.08727v3)

Published 27 Dec 2016 in cs.MM and cs.SD

Abstract: We introduce a dataset for facilitating audio-visual analysis of music performances. The dataset comprises 44 simple multi-instrument classical music pieces assembled from coordinated but separately recorded performances of individual tracks. For each piece, we provide the musical score in MIDI format, the audio recordings of the individual tracks, the audio and video recording of the assembled mixture, and ground-truth annotation files including frame-level and note-level transcriptions. We describe our methodology for the creation of the dataset, particularly highlighting our approaches for addressing the challenges involved in maintaining synchronization and expressiveness. We demonstrate the high quality of synchronization achieved with our proposed approach by comparing the dataset with existing widely-used music audio datasets. We anticipate that the dataset will be useful for the development and evaluation of existing music information retrieval (MIR) tasks, as well as for novel multi-modal tasks. We benchmark two existing MIR tasks (multi-pitch analysis and score-informed source separation) on the dataset and compare with other existing music audio datasets. Additionally, we consider two novel multi-modal MIR tasks (visually informed multi-pitch analysis and polyphonic vibrato analysis) enabled by the dataset and provide evaluation measures and baseline systems for future comparisons (from our recent work). Finally, we propose several emerging research directions that the dataset enables.

Citations (137)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.