Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Signature of Geometric Centroids for 3D Local Shape Description and Partial Shape Matching (1612.08408v1)

Published 26 Dec 2016 in cs.CV

Abstract: Depth scans acquired from different views may contain nuisances such as noise, occlusion, and varying point density. We propose a novel Signature of Geometric Centroids descriptor, supporting direct shape matching on the scans, without requiring any preprocessing such as scan denoising or converting into a mesh. First, we construct the descriptor by voxelizing the local shape within a uniquely defined local reference frame and concatenating geometric centroid and point density features extracted from each voxel. Second, we compare two descriptors by employing only corresponding voxels that are both non-empty, thus supporting matching incomplete local shape such as those close to scan boundary. Third, we propose a descriptor saliency measure and compute it from a descriptor-graph to improve shape matching performance. We demonstrate the descriptor's robustness and effectiveness for shape matching by comparing it with three state-of-the-art descriptors, and applying it to object/scene reconstruction and 3D object recognition.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.