Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the Broadcast Independence Number of Caterpillars (1612.08283v2)

Published 25 Dec 2016 in cs.DM

Abstract: Let $G$ be a simple undirected graph.A broadcast on $G$ isa function $f : V(G)\rightarrow\mathbb{N}$ such that $f(v)\le e_G(v)$ holds for every vertex $v$ of $G$, where $e_G(v)$ denotes the eccentricity of $v$ in $G$, that is, the maximum distance from $v$ to any other vertex of $G$.The cost of $f$ is the value ${\rm cost}(f)=\sum_{v\in V(G)}f(v)$.A broadcast $f$ on $G$ is independent if for every two distinct vertices $u$ and $v$ in $G$, $d_G(u,v)>\max{f(u),f(v)}$,where $d_G(u,v)$ denotes the distance between $u$ and $v$ in $G$.The broadcast independence number of $G$ is then defined as the maximum cost of an independent broadcast on $G$. In this paper, we study independent broadcasts of caterpillars and give an explicit formula for the broadcast independence number of caterpillars having no pair of adjacent vertices with degree 2.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube