Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the complete width and edge clique cover problems (1612.08057v1)

Published 23 Dec 2016 in cs.DM and math.CO

Abstract: A complete graph is the graph in which every two vertices are adjacent. For a graph $G=(V,E)$, the complete width of $G$ is the minimum $k$ such that there exist $k$ independent sets $\mathtt{N}_i\subseteq V$, $1\le i\le k$, such that the graph $G'$ obtained from $G$ by adding some new edges between certain vertices inside the sets $\mathtt{N}_i$, $1\le i\le k$, is a complete graph. The complete width problem is to decide whether the complete width of a given graph is at most $k$ or not. In this paper we study the complete width problem. We show that the complete width problem is NP-complete on $3K_2$-free bipartite graphs and polynomially solvable on $2K_2$-free bipartite graphs and on $(2K_2,C_4)$-free graphs. As a by-product, we obtain the following new results: the edge clique cover problem is NP-complete on $\overline{3K_2}$-free co-bipartite graphs and polynomially solvable on $C_4$-free co-bipartite graphs and on $(2K_2, C_4)$-free graphs. We also give a characterization for $k$-probe complete graphs which implies that the complete width problem admits a kernel of at most $2k$ vertices. This provides another proof for the known fact that the edge clique cover problem admits a kernel of at most $2k$ vertices. Finally we determine all graphs of small complete width $k\le 3$.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Van Bang Le (21 papers)
  2. Sheng-Lung Peng (4 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.