Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Two-stream convolutional neural network for accurate RGB-D fingertip detection using depth and edge information (1612.07978v1)

Published 23 Dec 2016 in cs.CV

Abstract: Accurate detection of fingertips in depth image is critical for human-computer interaction. In this paper, we present a novel two-stream convolutional neural network (CNN) for RGB-D fingertip detection. Firstly edge image is extracted from raw depth image using random forest. Then the edge information is combined with depth information in our CNN structure. We study several fusion approaches and suggest a slow fusion strategy as a promising way of fingertip detection. As shown in our experiments, our real-time algorithm outperforms state-of-the-art fingertip detection methods on the public dataset HandNet with an average 3D error of 9.9mm, and shows comparable accuracy of fingertip estimation on NYU hand dataset.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.