Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

Markov-Nash Equilibria in Mean-Field Games with Discounted Cost (1612.07878v2)

Published 23 Dec 2016 in cs.SY and math.OC

Abstract: In this paper, we consider discrete-time dynamic games of the mean-field type with a finite number $N$ of agents subject to an infinite-horizon discounted-cost optimality criterion. The state space of each agent is a locally compact Polish space. At each time, the agents are coupled through the empirical distribution of their states, which affects both the agents' individual costs and their state transition probabilities. We introduce a new solution concept of the Markov-Nash equilibrium, under which a policy is player-by-player optimal in the class of all Markov policies. Under mild assumptions, we demonstrate the existence of a mean-field equilibrium in the infinite-population limit $N \to \infty$, and then show that the policy obtained from the mean-field equilibrium is approximately Markov-Nash when the number of agents $N$ is sufficiently large.

Citations (99)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.