Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Spectral algorithms for tensor completion (1612.07866v1)

Published 23 Dec 2016 in cs.DS, math.ST, stat.ML, and stat.TH

Abstract: In the tensor completion problem, one seeks to estimate a low-rank tensor based on a random sample of revealed entries. In terms of the required sample size, earlier work revealed a large gap between estimation with unbounded computational resources (using, for instance, tensor nuclear norm minimization) and polynomial-time algorithms. Among the latter, the best statistical guarantees have been proved, for third-order tensors, using the sixth level of the sum-of-squares (SOS) semidefinite programming hierarchy (Barak and Moitra, 2014). However, the SOS approach does not scale well to large problem instances. By contrast, spectral methods --- based on unfolding or matricizing the tensor --- are attractive for their low complexity, but have been believed to require a much larger sample size. This paper presents two main contributions. First, we propose a new unfolding-based method, which outperforms naive ones for symmetric $k$-th order tensors of rank $r$. For this result we make a study of singular space estimation for partially revealed matrices of large aspect ratio, which may be of independent interest. For third-order tensors, our algorithm matches the SOS method in terms of sample size (requiring about $rd{3/2}$ revealed entries), subject to a worse rank condition ($r\ll d{3/4}$ rather than $r\ll d{3/2}$). We complement this result with a different spectral algorithm for third-order tensors in the overcomplete ($r\ge d$) regime. Under a random model, this second approach succeeds in estimating tensors of rank $d\le r \ll d{3/2}$ from about $rd{3/2}$ revealed entries.

Citations (86)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.