Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Equations in oligomorphic clones and the Constraint Satisfaction Problem for $ω$-categorical structures (1612.07551v3)

Published 22 Dec 2016 in cs.LO and math.LO

Abstract: There exist two conjectures for constraint satisfaction problems (CSPs) of reducts of finitely bounded homogeneous structures: the first one states that tractability of the CSP of such a structure is, when the structure is a model-complete core, equivalent to its polymorphism clone satisfying a certain non-trivial linear identity modulo outer embeddings. The second conjecture, challenging the approach via model-complete cores by reflections, states that tractability is equivalent to the linear identities (without outer embeddings) satisfied by its polymorphisms clone, together with the natural uniformity on it, being non-trivial. We prove that the identities satisfied in the polymorphism clone of a structure allow for conclusions about the orbit growth of its automorphism group, and apply this to show that the two conjectures are equivalent. We contrast this with a counterexample showing that $\omega$-categoricity alone is insufficient to imply the equivalence of the two conditions above in a model-complete core. Taking a different approach, we then show how the Ramsey property of a homogeneous structure can be utilized for obtaining a similar equivalence under different conditions. We then prove that any polymorphism of sufficiently large arity which is totally symmetric modulo outer embeddings of a finitely bounded structure can be turned into a non-trivial system of linear identities, and obtain non-trivial linear identities for all tractable cases of reducts of the rational order, the random graph, and the random poset. Finally, we provide a new and short proof, in the language of monoids, of the theorem stating that every $\omega$-categorical structure is homomorphically equivalent to a model-complete core.

Citations (38)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.