Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fast asynchronous updating algorithms for k-shell indices (1612.07277v1)

Published 20 Nov 2016 in physics.soc-ph and cs.SI

Abstract: Identifying influential nodes in networks is a significant and challenging task. Among many centrality indices, the $k$-shell index performs very well in finding out influential spreaders. However, the traditional method for calculating the $k$-shell indices of nodes needs the global topological information, which limits its applications in large-scale dynamically growing networks. Recently, L\@\"{u} \emph{et al.} [Nature Communications 7 (2016) 10168] proposed a novel asynchronous algorithm to calculate the $k$-shell indices, which is suitable to deal with large-scale growing networks. In this paper, we propose two algorithms to select nodes and update their intermediate values towards the $k$-shell indices, which can help in accelerating the convergence of the calculation of $k$-shell indices. The former algorithm takes into account the degrees of nodes while the latter algorithm prefers to choose the node whose neighbors' values have been changed recently. We test these two methods on four real networks and three artificial networks. The results suggest that the two algorithms can respectively reduce the convergence time up to 75.4\% and 92.9\% in average, compared with the original asynchronous updating algorithm.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube