Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Unsupervised Place Discovery for Visual Place Classification (1612.06933v1)

Published 21 Dec 2016 in cs.CV

Abstract: In this study, we explore the use of deep convolutional neural networks (DCNNs) in visual place classification for robotic mapping and localization. An open question is how to partition the robot's workspace into places to maximize the performance (e.g., accuracy, precision, recall) of potential DCNN classifiers. This is a chicken and egg problem: If we had a well-trained DCNN classifier, it is rather easy to partition the robot's workspace into places, but the training of a DCNN classifier requires a set of pre-defined place classes. In this study, we address this problem and present several strategies for unsupervised discovery of place classes ("time cue," "location cue," "time-appearance cue," and "location-appearance cue"). We also evaluate the efficacy of the proposed methods using the publicly available University of Michigan North Campus Long-Term (NCLT) Dataset.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.