Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Robust mixture of experts modeling using the skew $t$ distribution (1612.06879v1)

Published 9 Dec 2016 in stat.ME, cs.LG, and stat.ML

Abstract: Mixture of Experts (MoE) is a popular framework in the fields of statistics and machine learning for modeling heterogeneity in data for regression, classification and clustering. MoE for continuous data are usually based on the normal distribution. However, it is known that for data with asymmetric behavior, heavy tails and atypical observations, the use of the normal distribution is unsuitable. We introduce a new robust non-normal mixture of experts modeling using the skew $t$ distribution. The proposed skew $t$ mixture of experts, named STMoE, handles these issues of the normal mixtures experts regarding possibly skewed, heavy-tailed and noisy data. We develop a dedicated expectation conditional maximization (ECM) algorithm to estimate the model parameters by monotonically maximizing the observed data log-likelihood. We describe how the presented model can be used in prediction and in model-based clustering of regression data. Numerical experiments carried out on simulated data show the effectiveness and the robustness of the proposed model in fitting non-linear regression functions as well as in model-based clustering. Then, the proposed model is applied to the real-world data of tone perception for musical data analysis, and the one of temperature anomalies for the analysis of climate change data. The obtained results confirm the usefulness of the model for practical data analysis applications.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.