Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Optimal Containment of Epidemics in Temporal and Adaptive Networks (1612.06832v1)

Published 20 Dec 2016 in cs.SI, math.OC, and physics.soc-ph

Abstract: In this chapter, we focus on the problem of containing the spread of diseases taking place in both temporal and adaptive networks (i.e., networks whose structure `adapts' to the state of the disease). We specifically focus on the problem of finding the optimal allocation of containment resources (e.g., vaccines, medical personnel, traffic control resources, etc.) to eradicate epidemic outbreaks over the following three models of temporal and adaptive networks: (i) Markovian temporal networks, (ii) aggregated-Markovian temporal networks, and (iii) stochastically adaptive models. For each model, we present a rigorous and tractable mathematical framework to efficiently find the optimal distribution of control resources to eliminate the disease. In contrast with other existing results, our results are not based on heuristic control strategies, but on a disciplined analysis using tools from dynamical systems and convex optimization.

Citations (98)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.