Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Data-Driven Relevance Judgments for Ranking Evaluation (1612.06136v1)

Published 19 Dec 2016 in cs.IR

Abstract: Ranking evaluation metrics are a fundamental element of design and improvement efforts in information retrieval. We observe that most popular metrics disregard information portrayed in the scores used to derive rankings, when available. This may pose a numerical scaling problem, causing an under- or over-estimation of the evaluation depending on the degree of divergence between the scores of ranked items. The purpose of this work is to propose a principled way of quantifying multi-graded relevance judgments of items and enable a more accurate penalization of ordering errors in rankings. We propose a data-driven generation of relevance functions based on the degree of the divergence amongst a set of items' scores and its application in the evaluation metric Normalized Discounted Cumulative Gain (nDCG). We use synthetic data to demonstrate the interest of our proposal and a combination of data on news items from Google News and their respective popularity in Twitter to show its performance in comparison to the standard nDCG. Results show that our proposal is capable of providing a more fine-grained evaluation of rankings when compared to the standard nDCG, and that the latter frequently under- or over-estimates its evaluation scores in light of the divergence of items' scores.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube