Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Inexact Proximal Gradient Methods for Non-convex and Non-smooth Optimization (1612.06003v2)

Published 18 Dec 2016 in cs.LG and stat.ML

Abstract: In machine learning research, the proximal gradient methods are popular for solving various optimization problems with non-smooth regularization. Inexact proximal gradient methods are extremely important when exactly solving the proximal operator is time-consuming, or the proximal operator does not have an analytic solution. However, existing inexact proximal gradient methods only consider convex problems. The knowledge of inexact proximal gradient methods in the non-convex setting is very limited. % Moreover, for some machine learning models, there is still no proposed solver for exactly solving the proximal operator. To address this challenge, in this paper, we first propose three inexact proximal gradient algorithms, including the basic version and Nesterov's accelerated version. After that, we provide the theoretical analysis to the basic and Nesterov's accelerated versions. The theoretical results show that our inexact proximal gradient algorithms can have the same convergence rates as the ones of exact proximal gradient algorithms in the non-convex setting. Finally, we show the applications of our inexact proximal gradient algorithms on three representative non-convex learning problems. All experimental results confirm the superiority of our new inexact proximal gradient algorithms.

Citations (38)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.