Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Probabilistic Representation for Dynamic Movement Primitives (1612.05932v1)

Published 18 Dec 2016 in cs.RO

Abstract: Dynamic Movement Primitives have successfully been used to realize imitation learning, trial-and-error learning, reinforce- ment learning, movement recognition and segmentation and control. Because of this they have become a popular represen- tation for motor primitives. In this work, we showcase how DMPs can be reformulated as a probabilistic linear dynamical system with control inputs. Through this probabilistic repre- sentation of DMPs, algorithms such as Kalman filtering and smoothing are directly applicable to perform inference on pro- prioceptive sensor measurements during execution. We show that inference in this probabilistic model automatically leads to a feedback term to online modulate the execution of a DMP. Furthermore, we show how inference allows us to measure the likelihood that we are successfully executing a given motion primitive. In this context, we show initial results of using the probabilistic model to detect execution failures on a simulated movement primitive dataset.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube