Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Optimal Target Assignment and Path Finding for Teams of Agents (1612.05693v1)

Published 17 Dec 2016 in cs.AI, cs.MA, and cs.RO

Abstract: We study the TAPF (combined target-assignment and path-finding) problem for teams of agents in known terrain, which generalizes both the anonymous and non-anonymous multi-agent path-finding problems. Each of the teams is given the same number of targets as there are agents in the team. Each agent has to move to exactly one target given to its team such that all targets are visited. The TAPF problem is to first assign agents to targets and then plan collision-free paths for the agents to their targets in a way such that the makespan is minimized. We present the CBM (Conflict-Based Min-Cost-Flow) algorithm, a hierarchical algorithm that solves TAPF instances optimally by combining ideas from anonymous and non-anonymous multi-agent path-finding algorithms. On the low level, CBM uses a min-cost max-flow algorithm on a time-expanded network to assign all agents in a single team to targets and plan their paths. On the high level, CBM uses conflict-based search to resolve collisions among agents in different teams. Theoretically, we prove that CBM is correct, complete and optimal. Experimentally, we show the scalability of CBM to TAPF instances with dozens of teams and hundreds of agents and adapt it to a simulated warehouse system.

Citations (141)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)