Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Asymptotic Optimality in Stochastic Optimization (1612.05612v4)

Published 16 Dec 2016 in math.ST, math.OC, stat.ML, and stat.TH

Abstract: We study local complexity measures for stochastic convex optimization problems, providing a local minimax theory analogous to that of H\'{a}jek and Le Cam for classical statistical problems. We give complementary optimality results, developing fully online methods that adaptively achieve optimal convergence guarantees. Our results provide function-specific lower bounds and convergence results that make precise a correspondence between statistical difficulty and the geometric notion of tilt-stability from optimization. As part of this development, we show how variants of Nesterov's dual averaging---a stochastic gradient-based procedure---guarantee finite time identification of constraints in optimization problems, while stochastic gradient procedures fail. Additionally, we highlight a gap between problems with linear and nonlinear constraints: standard stochastic-gradient-based procedures are suboptimal even for the simplest nonlinear constraints, necessitating the development of asymptotically optimal Riemannian stochastic gradient methods.

Citations (54)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: