Emergent Mind

Asymptotic Optimality in Stochastic Optimization

(1612.05612)
Published Dec 16, 2016 in math.ST , math.OC , stat.ML , and stat.TH

Abstract

We study local complexity measures for stochastic convex optimization problems, providing a local minimax theory analogous to that of H\'{a}jek and Le Cam for classical statistical problems. We give complementary optimality results, developing fully online methods that adaptively achieve optimal convergence guarantees. Our results provide function-specific lower bounds and convergence results that make precise a correspondence between statistical difficulty and the geometric notion of tilt-stability from optimization. As part of this development, we show how variants of Nesterov's dual averaginga stochastic gradient-based procedureguarantee finite time identification of constraints in optimization problems, while stochastic gradient procedures fail. Additionally, we highlight a gap between problems with linear and nonlinear constraints: standard stochastic-gradient-based procedures are suboptimal even for the simplest nonlinear constraints, necessitating the development of asymptotically optimal Riemannian stochastic gradient methods.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.