Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Defensive Player Classification in the National Basketball Association (1612.05502v2)

Published 13 Dec 2016 in cs.LG and cs.AI

Abstract: The National Basketball Association(NBA) has expanded their data gathering and have heavily invested in new technologies to gather advanced performance metrics on players. This expanded data set allows analysts to use unique performance metrics in models to estimate and classify player performance. Instead of grouping players together based on physical attributes and positions played, analysts can group together players that play similar to each other based on these tracked metrics. Existing methods for player classification have typically used offensive metrics for clustering [1]. There have been attempts to classify players using past defensive metrics, but the lack of quality metrics has not produced promising results. The classifications presented in the paper use newly introduced defensive metrics to find different defensive positions for each player. Without knowing the number of categories that players can be cast into, Gaussian Mixture Models (GMM) can be applied to find the optimal number of clusters. In the model presented, five different defensive player types can be identified.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)