Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Defensive Player Classification in the National Basketball Association (1612.05502v2)

Published 13 Dec 2016 in cs.LG and cs.AI

Abstract: The National Basketball Association(NBA) has expanded their data gathering and have heavily invested in new technologies to gather advanced performance metrics on players. This expanded data set allows analysts to use unique performance metrics in models to estimate and classify player performance. Instead of grouping players together based on physical attributes and positions played, analysts can group together players that play similar to each other based on these tracked metrics. Existing methods for player classification have typically used offensive metrics for clustering [1]. There have been attempts to classify players using past defensive metrics, but the lack of quality metrics has not produced promising results. The classifications presented in the paper use newly introduced defensive metrics to find different defensive positions for each player. Without knowing the number of categories that players can be cast into, Gaussian Mixture Models (GMM) can be applied to find the optimal number of clusters. In the model presented, five different defensive player types can be identified.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube