Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Maximum Matching on Trees in the Online Preemptive and the Incremental Dynamic Graph Models (1612.05419v3)

Published 16 Dec 2016 in cs.DS

Abstract: We study the Maximum Cardinality Matching (MCM) and the Maximum Weight Matching (MWM) problems, on trees and on some special classes of graphs, in the Online Preemptive and the Incremental Dynamic Graph models. In the {\em Online Preemptive} model, the edges of a graph are revealed one by one and the algorithm is required to always maintain a valid matching. On seeing an edge, the algorithm has to either accept or reject the edge. If accepted, then the adjacent edges are discarded, and all rejections are permanent. In this model, the complexity of the problems is settled for deterministic algorithms. Epstein et al. gave a $5.356$-competitive randomized algorithm for MWM, and also proved a lower bound of $1.693$ for MCM. The same lower bound applies for MWM. In this paper we show that some of the results can be improved in the case of trees and some special classes of graphs. In the online preemptive model, we present a $64/33$-competitive (in expectation) randomized algorithm for MCM on trees. Inspired by the above mentioned algorithm for MCM, we present the main result of the paper, a randomized algorithm for MCM with a "worst case" update time of $O(1)$, in the incremental dynamic graph model, which is $3/2$-approximate (in expectation) on trees, and $1.8$-approximate (in expectation) on general graphs with maximum degree $3$. Note that this algorithm works only against an oblivious adversary. Hence, we derandomize this algorithm, and give a $(3/2 + \epsilon)$-approximate deterministic algorithm for MCM on trees, with an amortized update time of $O(1/\epsilon)$. We also present a minor result for MWM in the online preemptive model, a $3$-competitive (in expectation) randomized algorithm on growing trees (where the input revealed upto any stage is always a tree, i.e. a new edge never connects two disconnected trees).

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.