Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Towards a Deep Learning Framework for Unconstrained Face Detection (1612.05322v2)

Published 16 Dec 2016 in cs.CV

Abstract: Robust face detection is one of the most important pre-processing steps to support facial expression analysis, facial landmarking, face recognition, pose estimation, building of 3D facial models, etc. Although this topic has been intensely studied for decades, it is still challenging due to numerous variants of face images in real-world scenarios. In this paper, we present a novel approach named Multiple Scale Faster Region-based Convolutional Neural Network (MS-FRCNN) to robustly detect human facial regions from images collected under various challenging conditions, e.g. large occlusions, extremely low resolutions, facial expressions, strong illumination variations, etc. The proposed approach is benchmarked on two challenging face detection databases, i.e. the Wider Face database and the Face Detection Dataset and Benchmark (FDDB), and compared against recent other face detection methods, e.g. Two-stage CNN, Multi-scale Cascade CNN, Faceness, Aggregate Chanel Features, HeadHunter, Multi-view Face Detection, Cascade CNN, etc. The experimental results show that our proposed approach consistently achieves highly competitive results with the state-of-the-art performance against other recent face detection methods.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.