2000 character limit reached
Building a robust sentiment lexicon with (almost) no resource (1612.05202v1)
Published 15 Dec 2016 in cs.CL
Abstract: Creating sentiment polarity lexicons is labor intensive. Automatically translating them from resourceful languages requires in-domain machine translation systems, which rely on large quantities of bi-texts. In this paper, we propose to replace machine translation by transferring words from the lexicon through word embeddings aligned across languages with a simple linear transform. The approach leads to no degradation, compared to machine translation, when tested on sentiment polarity classification on tweets from four languages.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.