Towards End-to-End Audio-Sheet-Music Retrieval (1612.05070v1)
Abstract: This paper demonstrates the feasibility of learning to retrieve short snippets of sheet music (images) when given a short query excerpt of music (audio) -- and vice versa --, without any symbolic representation of music or scores. This would be highly useful in many content-based musical retrieval scenarios. Our approach is based on Deep Canonical Correlation Analysis (DCCA) and learns correlated latent spaces allowing for cross-modality retrieval in both directions. Initial experiments with relatively simple monophonic music show promising results.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.