Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Capacity of Gaussian MIMO Channels Under Total and Per-Antenna Power Constraints (1612.04797v1)

Published 14 Dec 2016 in cs.IT and math.IT

Abstract: The capacity of a fixed Gaussian multiple-input multiple-output (MIMO) channel and the optimal transmission strategy under the total power (TP) constraint and full channel state information are well-known. This problem remains open in the general case under individual per-antenna (PA) power constraints, while some special cases have been solved. These include a full-rank solution for the MIMO channel and a general solution for the multiple-input single-output (MISO) channel. In this paper, the fixed Gaussian MISO channel is considered and its capacity as well as optimal transmission strategies are determined in a closed form under the joint total and per-antenna power constraints in the general case. In particular, the optimal strategy is hybrid and includes two parts: first is equal-gain transmission and second is maximum-ratio transmission, which are responsible for the PA and TP constraints respectively. The optimal beamforming vector is given in a closed-form and an accurate yet simple approximation to the capacity is proposed. Finally, the above results are extended to the MIMO case by establishing the ergodic capacity of fading MIMO channels under the joint power constraints when the fading distribution is right unitary-invariant (of which i.i.d. and semi-correlated Rayleigh fading are special cases). Unlike the fixed MISO case, the optimal signaling is shown to be isotropic in this case.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)