Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

New few weight codes from trace codes over a local Ring (1612.04515v1)

Published 14 Dec 2016 in cs.IT and math.IT

Abstract: In this paper, new few weights linear codes over the local ring $R=\mathbb{F}_p+u\mathbb{F}_p+v\mathbb{F}_p+uv\mathbb{F}_p,$ with $u2=v2=0, uv=vu,$ are constructed by using the trace function defined over an extension ring of degree $m.$ %In fact, These codes are punctured from the linear code is defined in \cite{SWLP} up to coordinate permutations. These trace codes have the algebraic structure of abelian codes. Their weight distributions are evaluated explicitly by means of Gaussian sums over finite fields. Two different defining sets are explored. Using a linear Gray map from $R$ to $\mathbb{F}_p4,$ we obtain several families of new $p$-ary codes from trace codes of dimension $4m$. For the first defining set: when $m$ is even, or $m$ is odd and $p\equiv3 ~({\rm mod} ~4),$ we obtain a new family of two-weight codes, which are shown to be optimal by the application of the Griesmer bound; when $m$ is even and under some special conditions, we obtain two new classes of three-weight codes. For the second defining set: we obtain a new class of two-weight codes and prove that it meets the Griesmer bound. In addition, we give the minimum distance of the dual code. Finally, applications of the $p$-ary image codes in secret sharing schemes are presented.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube