Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Faster and Simpler Algorithm for Optimal Strategies of Blotto Game (1612.04029v2)

Published 13 Dec 2016 in cs.GT

Abstract: In the Colonel Blotto game, which was initially introduced by Borel in 1921, two colonels simultaneously distribute their troops across different battlefields. The winner of each battlefield is determined independently by a winner-take-all rule. The ultimate payoff of each colonel is the number of battlefields he wins. This game is commonly used for analyzing a wide range of applications such as the U.S presidential election, innovative technology competitions, advertisements, etc. There have been persistent efforts for finding the optimal strategies for the Colonel Blotto game. After almost a century Ahmadinejad, Dehghani, Hajiaghayi, Lucier, Mahini, and Seddighin provided a poly-time algorithm for finding the optimal strategies. They first model the problem by a Linear Program (LP) and use Ellipsoid method to solve it. However, despite the theoretical importance of their algorithm, it is highly impractical. In general, even Simplex method (despite its exponential running-time) performs better than Ellipsoid method in practice. In this paper, we provide the first polynomial-size LP formulation of the optimal strategies for the Colonel Blotto game. We use linear extension techniques. Roughly speaking, we project the strategy space polytope to a higher dimensional space, which results in a lower number of facets for the polytope. We use this polynomial-size LP to provide a novel, simpler and significantly faster algorithm for finding the optimal strategies for the Colonel Blotto game. We further show this representation is asymptotically tight in terms of the number of constraints. We also extend our approach to multi-dimensional Colonel Blotto games, and implement our algorithm to observe interesting properties of Colonel Blotto; for example, we observe the behavior of players in the discrete model is very similar to the previously studied continuous model.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.