Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Estimating individual employment status using mobile phone network data (1612.03870v1)

Published 12 Dec 2016 in cs.SI and cs.CY

Abstract: This study provides the first confirmation that individual employment status can be predicted from standard mobile phone network logs externally validated with household survey data. Individual welfare and households vulnerability to shocks are intimately connected to employment status and professions of household breadwinners. At a societal level unemployment is an important indicator of the performance of an economy. By deriving a broad set of novel mobile phone network indicators reflecting users financial, social and mobility patterns we show how machine learning models can be used to predict 18 categories of profession in a South-Asian developing country. The model predicts individual unemployment status with 70.4 percent accuracy. We further show how unemployment can be aggregated from individual level and mapped geographically at cell tower resolution, providing a promising approach to map labor market economic indicators, and the distribution of economic productivity and vulnerability between censuses, especially in heterogeneous urban areas. The method also provides a promising approach to support data collection on vulnerable populations, which are frequently under-represented in official surveys.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.