Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Random Kneser graphs and hypergraphs (1612.03868v3)

Published 12 Dec 2016 in math.CO and cs.DM

Abstract: The Kneser graph $KG_{n,k}$ is the graph whose vertices are the $k$-element subsets of $[n],$ with two vertices adjacent if and only if the corresponding sets are disjoint. A famous result due to Lov\'asz states that the chromatic number of $KG_{n,k}$ is equal to $n-2k+2$. In this paper we discuss the chromatic number of random Kneser graphs and hypergraphs. It was studied in two papers, one due to Kupavskii, who proposed the problem and studied the graph case, and the more recent one due to Alishahi and Hajiabolhassan. The authors of the latter paper had extended the result of Kupavskii to the case of general Kneser hypergraphs. Moreover, they have improved the bounds of Kupavskii in the graph case for many values of parameters. In the present paper we present a purely combinatorial approach to the problem based on blow-ups of graphs, which gives much better bounds on the chromatic number of random Kneser and Schrijver graphs and Kneser hypergraphs. This allows us to improve all known results on the topic. The most interesting improvements are obtained in the case of $r$-uniform Kneser hypergraphs with $r\ge 3$, where we managed to replace certain polynomial dependencies of the parameters by the logarithmic ones.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)