Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Primal-Dual Approximation Algorithm for Min-Sum Single-Machine Scheduling Problems (1612.03339v1)

Published 10 Dec 2016 in cs.DS

Abstract: We consider the following single-machine scheduling problem, which is often denoted $1||\sum f_{j}$: we are given $n$ jobs to be scheduled on a single machine, where each job $j$ has an integral processing time $p_j$, and there is a nondecreasing, nonnegative cost function $f_j(C_{j})$ that specifies the cost of finishing $j$ at time $C_{j}$; the objective is to minimize $\sum_{j=1}n f_j(C_j)$. Bansal & Pruhs recently gave the first constant approximation algorithm with a performance guarantee of 16. We improve on this result by giving a primal-dual pseudo-polynomial-time algorithm based on the recently introduced knapsack-cover inequalities. The algorithm finds a schedule of cost at most four times the constructed dual solution. Although we show that this bound is tight for our algorithm, we leave open the question of whether the integrality gap of the LP is less than 4. Finally, we show how the technique can be adapted to yield, for any $\epsilon >0$, a $(4+\epsilon )$-approximation algorithm for this problem.

Citations (36)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.