Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Primal-Dual Approximation Algorithm for Min-Sum Single-Machine Scheduling Problems (1612.03339v1)

Published 10 Dec 2016 in cs.DS

Abstract: We consider the following single-machine scheduling problem, which is often denoted $1||\sum f_{j}$: we are given $n$ jobs to be scheduled on a single machine, where each job $j$ has an integral processing time $p_j$, and there is a nondecreasing, nonnegative cost function $f_j(C_{j})$ that specifies the cost of finishing $j$ at time $C_{j}$; the objective is to minimize $\sum_{j=1}n f_j(C_j)$. Bansal & Pruhs recently gave the first constant approximation algorithm with a performance guarantee of 16. We improve on this result by giving a primal-dual pseudo-polynomial-time algorithm based on the recently introduced knapsack-cover inequalities. The algorithm finds a schedule of cost at most four times the constructed dual solution. Although we show that this bound is tight for our algorithm, we leave open the question of whether the integrality gap of the LP is less than 4. Finally, we show how the technique can be adapted to yield, for any $\epsilon >0$, a $(4+\epsilon )$-approximation algorithm for this problem.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube