Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Minimum Rates of Approximate Sufficient Statistics (1612.02542v2)

Published 8 Dec 2016 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: Given a sufficient statistic for a parametric family of distributions, one can estimate the parameter without access to the data. However, the memory or code size for storing the sufficient statistic may nonetheless still be prohibitive. Indeed, for $n$ independent samples drawn from a $k$-nomial distribution with $d=k-1$ degrees of freedom, the length of the code scales as $d\log n+O(1)$. In many applications, we may not have a useful notion of sufficient statistics (e.g., when the parametric family is not an exponential family) and we also may not need to reconstruct the generating distribution exactly. By adopting a Shannon-theoretic approach in which we allow a small error in estimating the generating distribution, we construct various {\em approximate sufficient statistics} and show that the code length can be reduced to $\frac{d}{2}\log n+O(1)$. We consider errors measured according to the relative entropy and variational distance criteria. For the code constructions, we leverage Rissanen's minimum description length principle, which yields a non-vanishing error measured according to the relative entropy. For the converse parts, we use Clarke and Barron's formula for the relative entropy of a parametrized distribution and the corresponding mixture distribution. However, this method only yields a weak converse for the variational distance. We develop new techniques to achieve vanishing errors and we also prove strong converses. The latter means that even if the code is allowed to have a non-vanishing error, its length must still be at least $\frac{d}{2}\log n$.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.