Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Query-adaptive Image Retrieval by Deep Weighted Hashing (1612.02541v2)

Published 8 Dec 2016 in cs.CV

Abstract: Hashing methods have attracted much attention for large scale image retrieval. Some deep hashing methods have achieved promising results by taking advantage of the strong representation power of deep networks recently. However, existing deep hashing methods treat all hash bits equally. On one hand, a large number of images share the same distance to a query image due to the discrete Hamming distance, which raises a critical issue of image retrieval where fine-grained rankings are very important. On the other hand, different hash bits actually contribute to the image retrieval differently, and treating them equally greatly affects the retrieval accuracy of image. To address the above two problems, we propose the query-adaptive deep weighted hashing (QaDWH) approach, which can perform fine-grained ranking for different queries by weighted Hamming distance. First, a novel deep hashing network is proposed to learn the hash codes and corresponding class-wise weights jointly, so that the learned weights can reflect the importance of different hash bits for different image classes. Second, a query-adaptive image retrieval method is proposed, which rapidly generates hash bit weights for different query images by fusing its semantic probability and the learned class-wise weights. Fine-grained image retrieval is then performed by the weighted Hamming distance, which can provide more accurate ranking than the traditional Hamming distance. Experiments on four widely used datasets show that the proposed approach outperforms eight state-of-the-art hashing methods.

Citations (53)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube