Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Smoothing Effects of Bagging: Von Mises Expansions of Bagged Statistical Functionals (1612.02528v1)

Published 8 Dec 2016 in stat.ML

Abstract: Bagging is a device intended for reducing the prediction error of learning algorithms. In its simplest form, bagging draws bootstrap samples from the training sample, applies the learning algorithm to each bootstrap sample, and then averages the resulting prediction rules. We extend the definition of bagging from statistics to statistical functionals and study the von Mises expansion of bagged statistical functionals. We show that the expansion is related to the Efron-Stein ANOVA expansion of the raw (unbagged) functional. The basic observation is that a bagged functional is always smooth in the sense that the von Mises expansion exists and is finite of length 1 + resample size $M$. This holds even if the raw functional is rough or unstable. The resample size $M$ acts as a smoothing parameter, where a smaller $M$ means more smoothing.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.