Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Smoothing Effects of Bagging: Von Mises Expansions of Bagged Statistical Functionals (1612.02528v1)

Published 8 Dec 2016 in stat.ML

Abstract: Bagging is a device intended for reducing the prediction error of learning algorithms. In its simplest form, bagging draws bootstrap samples from the training sample, applies the learning algorithm to each bootstrap sample, and then averages the resulting prediction rules. We extend the definition of bagging from statistics to statistical functionals and study the von Mises expansion of bagged statistical functionals. We show that the expansion is related to the Efron-Stein ANOVA expansion of the raw (unbagged) functional. The basic observation is that a bagged functional is always smooth in the sense that the von Mises expansion exists and is finite of length 1 + resample size $M$. This holds even if the raw functional is rough or unstable. The resample size $M$ acts as a smoothing parameter, where a smaller $M$ means more smoothing.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.