Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Neural Turing Machines: Convergence of Copy Tasks (1612.02336v1)

Published 7 Dec 2016 in cs.NE

Abstract: The architecture of neural Turing machines is differentiable end to end and is trainable with gradient descent methods. Due to their large unfolded depth Neural Turing Machines are hard to train and because of their linear access of complete memory they do not scale. Other architectures have been studied to overcome these difficulties. In this report we focus on improving the quality of prediction of the original linear memory architecture on copy and repeat copy tasks. Copy task predictions on sequences of length six times larger than those the neural Turing machine was trained on prove to be highly accurate and so do predictions of repeat copy tasks for sequences with twice the repetition number and twice the sequence length neural Turing machine was trained on.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.