Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Transition-based versus State-based Reward Functions for MDPs with Value-at-Risk (1612.02088v4)

Published 7 Dec 2016 in cs.AI

Abstract: In reinforcement learning, the reward function on current state and action is widely used. When the objective is about the expectation of the (discounted) total reward only, it works perfectly. However, if the objective involves the total reward distribution, the result will be wrong. This paper studies Value-at-Risk (VaR) problems in short- and long-horizon Markov decision processes (MDPs) with two reward functions, which share the same expectations. Firstly we show that with VaR objective, when the real reward function is transition-based (with respect to action and both current and next states), the simplified (state-based, with respect to action and current state only) reward function will change the VaR. Secondly, for long-horizon MDPs, we estimate the VaR function with the aid of spectral theory and the central limit theorem. Thirdly, since the estimation method is for a Markov reward process with the reward function on current state only, we present a transformation algorithm for the Markov reward process with the reward function on current and next states, in order to estimate the VaR function with an intact total reward distribution.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube