Papers
Topics
Authors
Recent
Search
2000 character limit reached

Local Group Invariant Representations via Orbit Embeddings

Published 6 Dec 2016 in cs.LG and stat.ML | (1612.01988v2)

Abstract: Invariance to nuisance transformations is one of the desirable properties of effective representations. We consider transformations that form a \emph{group} and propose an approach based on kernel methods to derive local group invariant representations. Locality is achieved by defining a suitable probability distribution over the group which in turn induces distributions in the input feature space. We learn a decision function over these distributions by appealing to the powerful framework of kernel methods and generate local invariant random feature maps via kernel approximations. We show uniform convergence bounds for kernel approximation and provide excess risk bounds for learning with these features. We evaluate our method on three real datasets, including Rotated MNIST and CIFAR-10, and observe that it outperforms competing kernel based approaches. The proposed method also outperforms deep CNN on Rotated-MNIST and performs comparably to the recently proposed group-equivariant CNN.

Citations (37)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.