Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Semi-Supervised Learning with the Deep Rendering Mixture Model (1612.01942v1)

Published 6 Dec 2016 in stat.ML, cs.LG, and cs.NE

Abstract: Semi-supervised learning algorithms reduce the high cost of acquiring labeled training data by using both labeled and unlabeled data during learning. Deep Convolutional Networks (DCNs) have achieved great success in supervised tasks and as such have been widely employed in the semi-supervised learning. In this paper we leverage the recently developed Deep Rendering Mixture Model (DRMM), a probabilistic generative model that models latent nuisance variation, and whose inference algorithm yields DCNs. We develop an EM algorithm for the DRMM to learn from both labeled and unlabeled data. Guided by the theory of the DRMM, we introduce a novel non-negativity constraint and a variational inference term. We report state-of-the-art performance on MNIST and SVHN and competitive results on CIFAR10. We also probe deeper into how a DRMM trained in a semi-supervised setting represents latent nuisance variation using synthetically rendered images. Taken together, our work provides a unified framework for supervised, unsupervised, and semi-supervised learning.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.