Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Coactive Critiquing: Elicitation of Preferences and Features (1612.01941v1)

Published 6 Dec 2016 in cs.AI

Abstract: When faced with complex choices, users refine their own preference criteria as they explore the catalogue of options. In this paper we propose an approach to preference elicitation suited for this scenario. We extend Coactive Learning, which iteratively collects manipulative feedback, to optionally query example critiques. User critiques are integrated into the learning model by dynamically extending the feature space. Our formulation natively supports constructive learning tasks, where the option catalogue is generated on-the-fly. We present an upper bound on the average regret suffered by the learner. Our empirical analysis highlights the promise of our approach.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube