Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Symmetries in the wheeled inverted pendulum mechanism (1612.01814v2)

Published 3 Dec 2016 in cs.SY

Abstract: The purpose of this article is to illustrate the role of connections and symmetries in the Wheeled Inverted Pendulum (WIP) mechanism - an underactuated system with rolling constraints - popularized commercially as the Segway, and thereby arrive at a set of simpler dynamical equations that could serve as the starting point for more complex feedback control designs. The first part of the article views the nonholonomic constraints enforced by the rolling assumption as defining an Ehresmann connection on a fiber bundle. The resulting equations are the reduced Euler-Lagrange equations, which are identical to the Lagrange d'Alembert equations of motion. In the second part we explore conserved quantities, in particular, nonholonomic momenta. To do so, we first introduce the notion of a symmetry group, whose action leaves both the Lagrangian and distribution invariant. We examine two symmetry groups - $SE (2)$ and $SE(2) \times \mathbb{S}{1}$. The first group leads to the purely kinematic case while the second gives rise to nonholonomic momentum equations.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.