Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Control Matching via Discharge Code Sequences (1612.01812v1)

Published 2 Dec 2016 in cs.LG

Abstract: In this paper, we consider the patient similarity matching problem over a cancer cohort of more than 220,000 patients. Our approach first leverages on Word2Vec framework to embed ICD codes into vector-valued representation. We then propose a sequential algorithm for case-control matching on this representation space of diagnosis codes. The novel practice of applying the sequential matching on the vector representation lifted the matching accuracy measured through multiple clinical outcomes. We reported the results on a large-scale dataset to demonstrate the effectiveness of our method. For such a large dataset where most clinical information has been codified, the new method is particularly relevant.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.