Papers
Topics
Authors
Recent
2000 character limit reached

Video Ladder Networks (1612.01756v3)

Published 6 Dec 2016 in cs.LG, cs.CV, and stat.ML

Abstract: We present the Video Ladder Network (VLN) for efficiently generating future video frames. VLN is a neural encoder-decoder model augmented at all layers by both recurrent and feedforward lateral connections. At each layer, these connections form a lateral recurrent residual block, where the feedforward connection represents a skip connection and the recurrent connection represents the residual. Thanks to the recurrent connections, the decoder can exploit temporal summaries generated from all layers of the encoder. This way, the top layer is relieved from the pressure of modeling lower-level spatial and temporal details. Furthermore, we extend the basic version of VLN to incorporate ResNet-style residual blocks in the encoder and decoder, which help improving the prediction results. VLN is trained in self-supervised regime on the Moving MNIST dataset, achieving competitive results while having very simple structure and providing fast inference.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.