Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Spatial Mixing and Systematic Scan Markov chains (1612.01576v3)

Published 5 Dec 2016 in cs.DM, math-ph, math.MP, and math.PR

Abstract: We consider spin systems on the integer lattice graph $\mathbb{Z}d$ with nearest-neighbor interactions. We develop a combinatorial framework for establishing that exponential decay with distance of spin correlations, specifically the strong spatial mixing condition (SSM), implies rapid mixing of a large class of Markov chains. As a first application of our method we prove that SSM implies $O(\log n)$ mixing of systematic scan dynamics (under mild conditions) on an $n$-vertex $d$-dimensional cube of the integer lattice graph $\mathbb{Z}d$. Systematic scan dynamics are widely employed in practice but have proved hard to analyze. A second application of our technology concerns the Swendsen-Wang dynamics for the ferromagnetic Ising and Potts models. We show that SSM implies an $O(1)$ bound for the relaxation time (i.e., the inverse spectral gap). As a by-product of this implication we observe that the relaxation time of the Swendsen-Wang dynamics in square boxes of $\mathbb{Z}2$ is $O(1)$ throughout the subcritical regime of the $q$-state Potts model, for all $q \ge 2$. We also use our combinatorial framework to give a simple coupling proof of the classical result that SSM entails optimal mixing time of the Glauber dynamics. Although our results in the paper focus on $d$-dimensional cubes in $\mathbb{Z}d$, they generalize straightforwardly to arbitrary regions of $\mathbb{Z}d$ and to graphs with subexponential growth.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.