Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Support vector regression model for BigData systems (1612.01458v1)

Published 5 Dec 2016 in cs.DC, cs.LG, and cs.PF

Abstract: Nowadays Big Data are becoming more and more important. Many sectors of our economy are now guided by data-driven decision processes. Big Data and business intelligence applications are facilitated by the MapReduce programming model while, at infrastructural layer, cloud computing provides flexible and cost effective solutions for allocating on demand large clusters. In such systems, capacity allocation, which is the ability to optimally size minimal resources for achieve a certain level of performance, is a key challenge to enhance performance for MapReduce jobs and minimize cloud resource costs. In order to do so, one of the biggest challenge is to build an accurate performance model to estimate job execution time of MapReduce systems. Previous works applied simulation based models for modeling such systems. Although this approach can accurately describe the behavior of Big Data clusters, it is too computationally expensive and does not scale to large system. We try to overcome these issues by applying machine learning techniques. More precisely we focus on Support Vector Regression (SVR) which is intrinsically more robust w.r.t other techniques, like, e.g., neural networks, and less sensitive to outliers in the training set. To better investigate these benefits, we compare SVR to linear regression.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube