Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

On-Demand Learning for Deep Image Restoration (1612.01380v3)

Published 5 Dec 2016 in cs.CV

Abstract: While machine learning approaches to image restoration offer great promise, current methods risk training models fixated on performing well only for image corruption of a particular level of difficulty---such as a certain level of noise or blur. First, we examine the weakness of conventional "fixated" models and demonstrate that training general models to handle arbitrary levels of corruption is indeed non-trivial. Then, we propose an on-demand learning algorithm for training image restoration models with deep convolutional neural networks. The main idea is to exploit a feedback mechanism to self-generate training instances where they are needed most, thereby learning models that can generalize across difficulty levels. On four restoration tasks---image inpainting, pixel interpolation, image deblurring, and image denoising---and three diverse datasets, our approach consistently outperforms both the status quo training procedure and curriculum learning alternatives.

Citations (78)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.