Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Randomized Incremental Construction for the Hausdorff Voronoi Diagram of point clusters (1612.01335v2)

Published 5 Dec 2016 in cs.CG

Abstract: This paper applies the randomized incremental construction (RIC) framework to computing the Hausdorff Voronoi diagram of a family of k clusters of points in the plane. The total number of points is n. The diagram is a generalization of Voronoi diagrams based on the Hausdorff distance function. The combinatorial complexity of the Hausdorff Voronoi diagram is O(n+m), where m is the total number of crossings between pairs of clusters. For non-crossing clusters (m=0), our algorithm works in expected O(n log n + k log n log k) time and deterministic O(n) space. For arbitrary clusters (m=O(n2)), the algorithm runs in expected O((m+n log k) log n) time and O(m +n log k) space. When clusters cross, bisectors are disconnected curves resulting in disconnected Voronoi regions that challenge the incremental construction. This paper applies the RIC paradigm to a Voronoi diagram with disconnected regions and disconnected bisectors, for the first time.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.