Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Video Captioning with Multi-Faceted Attention (1612.00234v1)

Published 1 Dec 2016 in cs.CV

Abstract: Recently, video captioning has been attracting an increasing amount of interest, due to its potential for improving accessibility and information retrieval. While existing methods rely on different kinds of visual features and model structures, they do not fully exploit relevant semantic information. We present an extensible approach to jointly leverage several sorts of visual features and semantic attributes. Our novel architecture builds on LSTMs for sentence generation, with several attention layers and two multimodal layers. The attention mechanism learns to automatically select the most salient visual features or semantic attributes, and the multimodal layer yields overall representations for the input and outputs of the sentence generation component. Experimental results on the challenging MSVD and MSR-VTT datasets show that our framework outperforms the state-of-the-art approaches, while ground truth based semantic attributes are able to further elevate the output quality to a near-human level.

Citations (87)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.