Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Three-weight codes and the quintic construction (1612.00126v1)

Published 1 Dec 2016 in cs.IT and math.IT

Abstract: We construct a class of three-Lee-weight and two infinite families of five-Lee-weight codes over the ring $R=\mathbb{F}_2 +v\mathbb{F}_2 +v2\mathbb{F}_2 +v3\mathbb{F}_2 +v4\mathbb{F}_2,$ where $v5=1.$ The same ring occurs in the quintic construction of binary quasi-cyclic codes. %The length of these codes depends on the degree $m$ of ring extension. They have the algebraic structure of abelian codes. Their Lee weight distribution is computed by using character sums. Given a linear Gray map, we obtain three families of binary abelian codes with few weights. In particular, we obtain a class of three-weight codes which are optimal. Finally, an application to secret sharing schemes is given.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube