Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Three-weight codes and the quintic construction (1612.00126v1)

Published 1 Dec 2016 in cs.IT and math.IT

Abstract: We construct a class of three-Lee-weight and two infinite families of five-Lee-weight codes over the ring $R=\mathbb{F}_2 +v\mathbb{F}_2 +v2\mathbb{F}_2 +v3\mathbb{F}_2 +v4\mathbb{F}_2,$ where $v5=1.$ The same ring occurs in the quintic construction of binary quasi-cyclic codes. %The length of these codes depends on the degree $m$ of ring extension. They have the algebraic structure of abelian codes. Their Lee weight distribution is computed by using character sums. Given a linear Gray map, we obtain three families of binary abelian codes with few weights. In particular, we obtain a class of three-weight codes which are optimal. Finally, an application to secret sharing schemes is given.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.