Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Optimal three-weight cubic codes (1612.00123v2)

Published 1 Dec 2016 in cs.IT and math.IT

Abstract: In this paper, we construct an infinite family of three-weight binary codes from linear codes over the ring $R=\mathbb{F}_2+v\mathbb{F}_2+v2\mathbb{F}_2$, where $v3=1.$ These codes are defined as trace codes. They have the algebraic structure of abelian codes. Their Lee weight distributions are computed by employing character sums. The three-weight binary linear codes which we construct are shown to be optimal when $m$ is odd and $m>1$. They are cubic, that is to say quasi-cyclic of co-index three. An application to secret sharing schemes is given.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.