Optimal three-weight cubic codes (1612.00123v2)
Abstract: In this paper, we construct an infinite family of three-weight binary codes from linear codes over the ring $R=\mathbb{F}_2+v\mathbb{F}_2+v2\mathbb{F}_2$, where $v3=1.$ These codes are defined as trace codes. They have the algebraic structure of abelian codes. Their Lee weight distributions are computed by employing character sums. The three-weight binary linear codes which we construct are shown to be optimal when $m$ is odd and $m>1$. They are cubic, that is to say quasi-cyclic of co-index three. An application to secret sharing schemes is given.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.