Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

When to Reset Your Keys: Optimal Timing of Security Updates via Learning (1612.00108v2)

Published 1 Dec 2016 in cs.LG, cs.AI, and cs.CR

Abstract: Cybersecurity is increasingly threatened by advanced and persistent attacks. As these attacks are often designed to disable a system (or a critical resource, e.g., a user account) repeatedly, it is crucial for the defender to keep updating its security measures to strike a balance between the risk of being compromised and the cost of security updates. Moreover, these decisions often need to be made with limited and delayed feedback due to the stealthy nature of advanced attacks. In addition to targeted attacks, such an optimal timing policy under incomplete information has broad applications in cybersecurity. Examples include key rotation, password change, application of patches, and virtual machine refreshing. However, rigorous studies of optimal timing are rare. Further, existing solutions typically rely on a pre-defined attack model that is known to the defender, which is often not the case in practice. In this work, we make an initial effort towards achieving optimal timing of security updates in the face of unknown stealthy attacks. We consider a variant of the influential FlipIt game model with asymmetric feedback and unknown attack time distribution, which provides a general model to consecutive security updates. The defender's problem is then modeled as a time associative bandit problem with dependent arms. We derive upper confidence bound based learning policies that achieve low regret compared with optimal periodic defense strategies that can only be derived when attack time distributions are known.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube